COMPOSITE MATERIALS AND STRUCTURES

Course Code		Category	Hours / Week			Credits	Maximum Marks		
A5AE29		PCC	L	Т	P	C	CIA	SEE	Total
			3	0	0 0	3	30	70	100
response 2. To impar	le knowled e of compo t knowledg	/ES ge on developing fun site materials. e on micromechanica ontinuous filament.				·	-		
UNIT-I	BASIC C	HARA	CTER	ISTICS	5				
types and c silicon carbi	lassification de, and bo	als, natural and man n of composites. Rei orn carbide fibres. Pa atrix and ceramic com	inforcem articulate	ents:	Fibres ·	– Glass, Si	lica, Ke	vlar, carb	on, boro
UNIT-II	MICROMECHANICS								
of typical composite p	composite roperties. /	tes, constituent mate materials, laminate Advanced manufactu	e charao ring metl	cteristi hods					
UNIT-III	COORD	INATE TRANSFOR	RMATIC	N					
Transformat Elastic beh	ion of stres avior of ι constants	ent types of materia ss and strain, Numeric unidirectional compo and reduced stiffn	cal exarr sites: E	nples c lastic	f stress consta	s strain trans ints of lan	sformati nina, re	on Iationship	betwee
UNIT-IV	STRENC	GTH OF UNIDIREC			/INA				
under tensio	on and shea	lure, Failure mechan ar maximum stress a ge effects. Micro mec	nd strair	o criter	ia, appl	ication to de	esign. T		
UNIT-V	ANALYSIS OF LAMINATED COMPOSITE PLATES								
Introduction using thin pl		heory, specially ortho	otropic p	late, c	ross an	d angle ply	laminat	ed plates	, problem
Text Book	s:								
		echanics of Composit Ihyay," Mechanics of							kswan P
Referer	nce Books	s.							
		J .							

Composites", 3rd Edition, John Wiley & Sons.

2. R.F. Gibson," Principles of composite material mechanics", 3rd Edition, CRC press.

COURSE OUTCOMES

Upon successful completion of this course, the student are able to

- 1. Exemplify the properties and applications of composite materials used in aircraft
- 2. Determine the material properties of the composites using micromechanics approach
- 3. Exemplify the transformation of stress and strain in composite material
- 4. Illustrate the elastic behaviour of unidirectional composites subjected to stress
- 5. Predict the strength of the unidirectional lamina and laminate by major analysing techniques